Inequalities

The following inequalities are useful when you know very little about your distribution, but you would still like to make probabilistic claims. They most often show up in proofs.

Markov's Inequality

If *X* is a *non-negative* random variable:

$$P(X \ge a) \le \frac{E[X]}{a} \qquad \qquad \text{for all } a > 0$$

Chebyshev's Inequality

If *X* is a random variable with $E[X] = \mu$ and $Var(X) = \sigma^2$:

$$P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2} \qquad \qquad \text{for all } k > 0$$

Law of Large Numbers

Consider IID random variables $X_1, X_2...$ such that $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$. Then for any $\varepsilon > 0$, the Weak Law of Large Numbers states:

$$P(|X-\mu| \ge \varepsilon) \xrightarrow[n \to \infty]{} 0$$

The Strong Law of Large Numbers states:

$$P\left(lim_{n\to\infty}\left(\frac{X_1+X_2+\cdots+X_n}{n}\right)=\mu\right)=1$$

Central Limit Theorem

The central limit theorem proves that the averages of equally sized samples from *any* distribution themselves be normally distributed. Consider IID random variables $X_1, X_2...$ such that $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$. Let

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Mathematically, the central limit theorem states:

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$
 as $n \to \infty$

It is often expressed in terms of the standard normal, Z:

$$Z = \frac{(\sum_{i=1}^{n} X_i) - n\mu}{\sigma \sqrt{n}} \qquad \text{as } n \to \infty$$

Example 1

Say you have a new algorithm and you want to test its running time. You have an idea of the variance of the algorithm's run time: $\sigma^2 = 4\sec^2$ but you want to estimate the mean: $\mu = t\sec$. You can run the algorithm repeatedly (IID trials). How many trials do you have to run so that your estimated runtime = $t \pm 0.5$ with 95% certainty? Let X_i be the run time of the *i*-th run (for $1 \le i \le n$).

$$0.95 = P(-0.5 \le \frac{\sum_{i=1}^{n} X_i}{n} - t \le 0.5)$$

By the central limit theorem, the standard normal Z must be equal to:

$$Z = \frac{(\sum_{i=1}^{n} X_i) - n\mu}{\sigma\sqrt{n}}$$
$$= \frac{(\sum_{i=1}^{n} X_i) - nt}{2\sqrt{n}}$$

Now we rewrite our probability inequality so that the central term is Z:

$$\begin{aligned} 0.95 &= P(-0.5 \le \frac{\sum_{i=1}^{n} X_{i}}{n} - t \le 0.5) = P(\frac{-0.5\sqrt{n}}{2} \le \frac{\sum_{i=1}^{n} X_{i}}{n} - t \le \frac{0.5\sqrt{n}}{2}) \\ &= P(\frac{-0.5\sqrt{n}}{2} \le \frac{\sqrt{n}}{2} \frac{\sum_{i=1}^{n} X_{i}}{n} - \frac{\sqrt{n}}{2} t \le \frac{0.5\sqrt{n}}{2}) = P(\frac{-0.5\sqrt{n}}{2} \le \frac{\sum_{i=1}^{n} X_{i}}{2\sqrt{n}} - \frac{\sqrt{n}}{\sqrt{n}} \frac{\sqrt{n}t}{2} \le \frac{0.5\sqrt{n}}{2}) \\ &= P(\frac{-0.5\sqrt{n}}{2} \le \frac{\sum_{i=1}^{n} X_{i} - nt}{2\sqrt{n}} \le \frac{0.5\sqrt{n}}{2}) \\ &= P(\frac{-0.5\sqrt{n}}{2} \le Z \le \frac{0.5\sqrt{n}}{2}) \end{aligned}$$

And now we can find the value of *n* that makes this equation hold.

$$\begin{split} 0.95 &= \phi(\frac{\sqrt{n}}{4}) - \phi(-\frac{\sqrt{n}}{4}) = \phi(\frac{\sqrt{n}}{4}) - (1 - \phi(\frac{\sqrt{n}}{4})) \\ &= 2\phi(\frac{\sqrt{n}}{4}) - 1 \\ 0.975 &= \phi(\frac{\sqrt{n}}{4}) \\ \phi^{-1}(0.975) &= \frac{\sqrt{n}}{4} \\ 1.96 &= \frac{\sqrt{n}}{4} \\ &n = 61.4 \end{split}$$

Thus it takes 62 runs. If you are interested in how this extends to cases where the variance is unknown, look into variations of the students' t-test.

Example 2

You will roll a 6 sided dice 10 times. Let *X* be the total value of all 10 dice = $X_1 + X_2 + \cdots + X_1 0$. You win the game if $X \le 25$ or $X \ge 45$. Use the central limit theorem to calculate the probability that you win.

Recall that $E[X_i] = 3.5$ and $Var(X_i) = \frac{35}{12}$.

$$P(X \le 25 \text{ or } X \ge 45) = 1 - P(25.5 \le X \le 44.5)$$

= $1 - P(\frac{25.5 - 10(3.5)}{\sqrt{35/12}\sqrt{10}} \le \frac{X - 10(3.5)}{\sqrt{35/12}\sqrt{10}} \le \frac{44.5 - 10(3.5)}{\sqrt{35/12}\sqrt{10}}$
 $\approx 1 - (2\phi(1.76) - 1) \approx 2(1 - 0.9608) = 0.0784$